Introduction of Antenna
Definition of Antenna
- Transmitter and receiver of EM wave
- Signal from current to wave
- from lumped to distributed
Antenna classifications
- Resonant and non-resonant/leaky/travelling wave
- Antenna number: element, multiple antennas, array
- Shape: wire, loop, slot, patch/microstrip, cavity
- Materials: metallic, dielectric
- Property: wideband, narrow band
- Yagi-Uda, Vivaldi, Cassegrain
- Function: moblie/handset, base station, AiP
Maxwell equations
$$ \nabla \cdot \vec D = \rho \rightarrow \nabla \cdot \tilde{\vec D} = \rho \\ \nabla \cdot {\vec B} = 0 \rarr \nabla \cdot \tilde{\vec B} = 0\\ \nabla \times {\vec E} = -\frac{\partial \vec B}{\partial t} \rarr \nabla \times \tilde{\vec E} = -j\omega \tilde{\vec B}\\ \nabla \times {\vec H} = \vec J + \frac{\partial \vec D}{\partial t} \rarr \nabla \times \tilde{\vec H} = \vec J + j\omega \tilde{\vec D}\\ \vec D = \varepsilon \vec E\\ \vec B = \mu \vec H $$ $$ \nabla^2 \vec F = \nabla(\nabla \cdot \vec F) - \nabla \times (\nabla \times \vec F)\\ \nabla \times (\nabla f) = 0\\ \nabla \cdot (\nabla \times \vec F) = 0 $$Auxiliary Potential Functions
Let
$$ \vec B = \nabla \times \vec A\\ \vec E + j\omega \vec A = -\nabla \phi $$ $$ \nabla \cdot \vec D = \varepsilon \nabla \cdot(-\nabla \phi - j\omega \vec A) = \rho\\ \Rightarrow \nabla^2\phi + \omega^2\mu\varepsilon\phi = - \frac{\rho}{\varepsilon} - j\omega(\nabla \cdot \vec A + j\omega \mu \varepsilon \phi) $$ $$ \nabla \times \vec H = \frac{1}{\mu}(\nabla(\nabla \cdot \vec A) - \nabla^2\vec A) = \vec J + j\omega \vec D = \vec J + j\omega\varepsilon(-\nabla\phi - j\omega \vec A)\\ \Rightarrow \nabla^2\vec A + \omega^2\mu\varepsilon\vec A = -\mu \vec J - \nabla(\nabla \cdot \vec A + j\omega\mu\varepsilon\phi) $$Use Lorentz Gauge
$$ \nabla \cdot \vec A + j\omega\mu\varepsilon\phi = 0 $$Then
$$ \nabla^2\vec A + \omega^2\mu\varepsilon\vec A = -\mu \vec J\\ \nabla^2\phi + \omega^2\mu\varepsilon\phi = - \frac{\rho}{\varepsilon} $$Solve ODE:
$$ \begin{equation} \nabla^2\phi + k^2\phi = 0(r\ne 0) \end{equation}\\ \begin{equation} \nabla^2\phi + k^2\phi = -\frac{\rho}{\varepsilon}(r=0) \end{equation} $$For (1)
$$ u(r) = \frac{\phi(r)}{r}\\ \frac{\rm{d}^2}{\rm{d}r^2}u + k^2u = 0\\ u = C_1e^{-jkr} + C_2e^{jkr}\\ \phi = C_1\frac{e^{-jkr}}{r} $$For (2), in arbitrary volume
$$ \iiint_V(\nabla^2\phi + k^2\phi)\mathrm dv = \iiint_V(-\frac{\rho}{\varepsilon}\mathrm dv) = -\frac{q}{\varepsilon}\\ r \rightarrow 0\\ \iiint_V(k^2\phi)\mathrm dv = 0\\ \iiint_V\nabla^2\phi \mathrm dv = \oiint_S \nabla\phi \cdot \mathrm d\vec s = C_1 \oiint_S (\frac{-jkre^{-jkr} - e^{-jkr}}{r^2})\mathrm d\vec s = C_1 (\frac{-jkre^{-jkr} - e^{-jkr}}{r^2})4\pi r^2 = -C_1 4\pi $$Finally,
$$ \phi(r) = \frac{q}{4\pi\varepsilon}\frac{e^{-jkr}}{r} $$Radiation Parameters
Field Zone
Near field: resonant, field;
Far field: propagation, wave;
Fresnel region: transition;

Antenna Parameters
- Radiation patterns
- Radiation Intensity
- Power Density
- Directivity (方向性) and Gain (重要!)
- Polarization
- Effective Aperture(等效口面) and Aperture efficienty(口面效率)
E 面:与电场方向平行的面
H 面:与磁场方向平行的面
Pattern Parameters

Often use log scale.
Power Density
Instantaneous Poynting vector $\vec S(x, y, z, t)$
Radiation Power Density = Time average Poynting vector $\vec S_{av}(x, y, z)=\frac1T\int_0^T\vec S(x, y, z, t)\mathrm dt = \frac12\text{Re}[\tilde{\vec E} \times \tilde{\vec H^*}]$
Total Radiation Power $P_{rad} = \oiint_S[\tilde{\vec E} \times \tilde{\vec H^*}] \cdot \mathrm d\vec s$
Radiation Intensity
$$ U(\theta, \varphi) = r^2 S(r, \theta, \varphi) $$Isotropic 各向同性
$$ P_{rad} = \int_{0}^{2\pi}\int_{0}^{\pi}U\sin\theta\mathrm d\theta\mathrm d\varphi $$Directivity
$$ D = \frac{U_{\max}}{U_{av}} = \frac{P_{\max}}{P_{rad}/4\pi} $$



Gain

Polarization

Polarization Mismatch:

CP

Effective Aperture and Aperture efficiency


Circuit Parameters
Input impedance
Input impedance definition:
- the impedance presented by an antenna at its terminals
- the ratio of the voltage to current at its terminals
- the ratio of the electric to magnetic fields at its terminals

Conjugate Matching
$$ Z_A = Z_g^* $$Mismatching

Radiation Resistance
$$ P_{rad} = \frac12|I_g|^2R_r = \oiint_S\vec S_{av} \cdot \rm d\vec s $$
Scattering Parameters



二端口网络通常用于描述二天线问题。 $S_{11}$ 表示天线1的反射, $S_{21}$ 表示天线1到天线2的耦合,均不利于信号的传播。我们希望让 $1 - S_{11}^2 - S_{21}^2$ 尽可能大。
Link Calculation
Friis’s Equation


EIRP

赫兹偶极子的辐射电阻: $80\pi^2(\frac{\Delta z}{\lambda})^2$ ,方向性 $\frac{2}{3}$ 。
Radar Equation

RCS(Radar cross section)
RCS (σ) of a radar target is an effective area that intercepts the transmitted radar power and then
scatters that power isotropically back to the radar receiver.
- $W_i$ , $W_o$ and $R$ are known;
- $\sigma$ converges.
Antenna Theorems
$$ \boxed{P_r=\mathrm{P}_t\mathrm{G}_t\mathrm{G}_r(\frac{\lambda}{4\pi R})^2} $$ $$ P_{r}=P_{t}\mathrm{e}_{r}\mathrm{e}_{t}D_{r}\mathrm{D}_{t}(1-\left|\Gamma_{r}\right|^{2})(1-\left|\Gamma_{t}\right|^{2})(\frac{\lambda}{4\pi R})^{2} $$In radar:
$$ P_{r}=P_{t}\mathrm{G}_{t}\mathrm{G}_{r}\sigma\frac{1}{4\pi}(\frac{\lambda}{4\pi R_{1}R_{2}})^{2} $$Equivalent circuit model

Duality Theorem

电 -> 磁,不变号;
磁 -> 电,变号。
Image Theorem
PEC:完美电导体
PMC:完美磁导体
定理条件:
- PEC or PMC
- Infinite boundary
PEC
$$ \begin{aligned}&\hat{n}\times\vec{E}=0\\&\hat{n}\cdot\vec{B}=0\end{aligned} $$PMC
$$ \begin{aligned}&\hat{n}\times\vec{H}=0\\&\hat{n}\cdot\vec{D}=0\end{aligned} $$
Note:
- Satisfied with boundary condition;
- Mirror source instead of PEC or PMC infinite boundary;
- Array: source and mirror source;
- Current loop: upper inside, lower outside.
Reciprocity Theorem
In radiation pattern,

Transmitting pattern of antenna “a”
$$ Z_{_{ba}}(\theta,\varphi)=\frac{V_{_b}(\theta,\varphi)}{I_{_a}} $$Receiving pattern of ante
$$ Z_{ab}(\theta,\varphi)=\frac{V_{a}(\theta,\varphi)}{I_{b}} $$Then,
$$ Z_{ab}(\theta,\phi)=Z_{ba}(\theta,\phi) $$Lorentz Reciprocity Theorem
$$ -\nabla\cdot(\vec{E}_{1}\times\vec{H}_{2}-\vec{E}_{2}\times\vec{H}_{1})=\vec{E}_{1}\cdot\vec{J}_{2}+\vec{H}_{2}\cdot\vec{M}_{1}-\vec{E}_{2}\cdot\vec{J}_{1}-\vec H_1 \cdot \vec M_2\\ -\oiint_{S}(\vec{E}_{1}\times\vec{H}_{2}-\vec{E}_{2}\times\vec{H}_{1})\cdot ds^{'}=\iiint_{V}\left(\vec{E}_{1}\cdot\vec{J}_{2}+\vec{H}_{2}\cdot\vec{M}_{1}-\vec{E}_{2}\cdot\vec{J}_{1}-\vec H_1 \cdot \vec M_2\right)dv^{'} $$Far field:
$$ \vec{H}_i=\hat{r}\times\vec{E}_i/\eta;\quad d\vec{s}=\hat{n}ds=\hat{r}ds $$ $$ (\vec{E}_1\times\vec{H}_2-\vec{E}_2\times\vec{H}_1)\cdot\hat{r}=(\hat{r}\times\vec{E}_1)\cdot\vec{H}_2-(\hat{r}\times\vec{E}_2)\cdot\vec{H}_1=0 $$ $$ \iiint_{V}\Big(\vec{E}_{1}\cdot\vec{J}_{2}+\vec{H}_{2}\cdot\vec{M}_{1}-\vec{E}_{2}\cdot\vec{J}_{1}-\vec{H}_{1}\cdot\vec{M}_{2}\Big)d\nu^{'}=0\\\iiint_{V}\Big(\vec{E}_{1}\cdot\vec{J}_{2}-\vec{H}_{1}\cdot\vec{M}_{2}\Big)d\nu^{'}=\iiint_{V}\Big(\vec{E}_{2}\cdot\vec{J}_{1}-\vec{H}_{2}\cdot\vec{M}_{1}\Big)d\nu^{'} $$Reaction: Reciprocity theorem: $\langle 1 2\rangle=\langle 2,1\rangle$
$$ \left\langle1,2\right\rangle=\int_{V}(\vec{E}_{1}\cdot\vec{J}_{2}-\vec{H}_{1}\cdot\vec{M}_{2})d\nu\quad\left\langle2,1\right\rangle=\int_{V}(\vec{E}_{2}\cdot\vec{J}_{1}-\vec{H}_{2}\cdot\vec{M}_{1})d\nu $$If only current-source
$$ \iiint_V\vec{E}_1\cdot\vec{J}_2d\nu=\iiint_V\vec{E}_2\cdot\vec{J}_1d\nu\\ \vec{E}_1\cdot\vec{J}_2=\vec{E_2} \cdot \vec{J_1} $$Non-reciprocity
Electron plasma (non-reciprocal media)
$$ \varepsilon = \begin{bmatrix}\varepsilon_{xx}&+ig&0\\-ig&\varepsilon_{yy}&0\\0&0&\varepsilon_{zz}\end{bmatrix} $$Huygen’s Principle



Dipole Antenna
Hertz Dipole
- Infinite short length;
- Uniform distribution;
- Infinite small radius;



Finite Length Dipole

R is the distance between observer and source,
r is the distance between observer and origin.
Small Dipole

Then
$$ \vec{A}(x,y,z)=\hat{z}\mu\frac{e^{-jkr}}{4\pi r}\cdot\frac12I_{in}l\\ \vec{A}(\theta,r)=\frac12I_{in}l\mu\frac{e^{-jkr}}{4\pi r}(-\sin\theta\hat{\theta}+\cos\theta\hat{r}) $$ $$ \vec{E}=j\omega\mu I_{in}l\frac{e^{-jkr}}{8\pi r}\sin\theta\hat{\theta}\\\vec{H}=j\beta I_{in}l\frac{e^{-jkr}}{8\pi r}\sin\theta\hat{\varphi} $$Note: half of the ideal infinitesima(Hertz) dipole
$$ \mathrm{Directivity}:\quad D=\frac{4\pi}{\Omega_A}\Rightarrow D_{\underset{dipole}{\operatorname*{small}}}=1.5 $$ $$ R_{rad}=20\left(\frac{\pi\Delta z}\lambda\right)^2=\frac14R_{rad}^\textit{Hertz dipole} $$ $$ P_{rad}=\frac14\frac{4\pi}3{\left(\frac{I\Delta z}{4\pi}\right)}^2k^2\eta{=}\frac12I^2R_{rad} $$General Case
$$ E_{\theta}=j\eta\frac{I_0e^{-jkr}}{2\pi r}\Bigg[\frac{\cos(\frac{kl}2\cos\theta)-\cos(\frac{kl}2)}{\sin\theta}\Bigg]\\H_{\varphi}=j\frac{I_0e^{-jkr}}{2\pi r}\Bigg[\frac{\cos(\frac{kl}2\cos\theta)-\cos(\frac{kl}2)}{\sin\theta}\Bigg] $$Beam width: change with length.



Input Impedance
Input resistance $R_r$ :
- calculated by E and H at port;
- take the real part (lossless).
Radiation resistance $R_{rad}$ :
- calculated by E and H at far-field;
I is the maximum/peak current.
General Relation:
$$ R_r=R_{rad}/\sin^2\left(\frac{kl}2\right) $$Half-wavelength dipole

Edge capacitive effect:
- Terminal (open-end)
current is not ideal zero; - Effective length is longer
Applications
Wideband Antennas

Folded Dipole

Increase Input Impedance
Log-periodic & Yagi-Uda antenna

Dipole Antennas in base station

Monopole

Loop Antennas
Small Loop



Infinite small loop radius;
Infinite small wire radius;
Uniform distribution.
Resistance $R_r$ too small!
Finite-length loop antennas



Modes of Loop antennas


Helix/helical antennas

Axial Mode

Normal Mode:


Aperture Antenna
Huygens’ Principle

Rectangular aperture antennas





Horn Antennas


The E-pattern is in shadow.



Antenna Array
1-D Linear Array
2-D Planar Array
3-D Conformal Array
Array Element
- Dipoles
- Loops
- Slots
- Microstrip antennas
Two-Element array

Remarks:
- Two element;
- Towards Y axis;
- Along Z axis;
- Space: d;
- Uniform phase
and amplitude; - Observe in 2D
(YZ-plane).
Far field Approximation

Remarks:
- Uniform phase and amplitude;
- AF is related to space (d);
- AF is with no relation with antenna type.


N-Element array

Refenece Point at the end:
$$ AF=\frac{e^{j\frac N2\Psi}\sin\left(\frac N2\Psi\right)}{e^{j\frac12\Psi}\sin\left(\frac12\Psi\right)},\Psi=kd\cos\theta, $$Refenece Point at the center:
$$ AF=\frac{\sin\left(\frac N2\Psi\right)}{\sin\left(\frac12\Psi\right)},\Psi=kd\cos\theta, $$In Progreessive Phase Shift:
$$ \Psi=kd\cos\theta+\alpha $$ $$ AF=1+e^{j(kd\cos\theta+\alpha)}+e^{j2(kd\cos\theta+\alpha)}+\cdots+e^{j(N-1)(kd\cos\theta+\alpha)}\\=\sum_{n=1}^Ne^{j(n-1)(kd\cos\theta+\alpha)}=\sum_{n=1}^Ne^{j(n-1)\Psi}=\frac{e^{j\frac N2\Psi}\sin\left(\frac N2\Psi\right)}{e^{j\frac12\Psi}\sin\left(\frac12\Psi\right)} $$Normalized Array Factor:
$$ \left|f(\Psi)\right|=\left|\frac{\sin\left(\frac N2\Psi\right)}{N\sin\left(\frac12\Psi\right)}\right| $$Grating Lobe:
$$ \begin{aligned} \theta\in\begin{bmatrix}0,\pi\end{bmatrix}\text{ or }\theta\in\begin{bmatrix}\theta_1,\theta_2\end{bmatrix}\text{, visible region} \\ \text{In the visible region,} \\ ifwehaveY= 0\mathrm{~and~}\Psi=2\pi. \end{aligned} $$Avoid grating lobe:
- Smaller d;
- Smaller phase shift.
Broadside Array
Maximum @ $\theta = 90\degree$
$$ AF\boldsymbol{=}N@\boldsymbol{\theta}\boldsymbol{=}\boldsymbol{\pi}/2\quad\boldsymbol{\Psi}\boldsymbol{=}kd\cos\boldsymbol{\theta}\boldsymbol{+}\boldsymbol{\alpha}|_{\theta=\pi/2}\boldsymbol{=}0 $$

End-fire Array

Bidirectional:

Unidirectional:

Phased Array

Non-uniform Array
Side Lobe
Uniform array:
- Universal pattern: N↑, SLL↓
- With a limit of -13.3 dB
- No control of SL
How to reduce SLL?
Non-uniform excitation

Planar Array

Can be viewed as product of two linear array factors:
$$ AF=\sum_{i=1}^{M\times N}I_ie^{jk\hat{r}\cdot\vec{r}_i}\\ AF_n(\theta,\phi)=\left\{\frac{\sin(\frac M2\psi_x)}{M\sin\frac{\psi_x}2}\right\}\left\{\frac{\sin(\frac N2\psi_y)}{N\sin\frac{\psi_y}2}\right\};\\\psi_x=kd_x\sin\theta\cos\varphi+\alpha_x\\\psi_y=kd_y\sin\theta\sin\varphi+\alpha_y $$Applications
Yagi-Uda Antenna
Basic configuration:
- One driven element;
- Two parasitic elements or more

Remarks:
- Parasitic elements are excited by near-field coupling from the driven element;
- Proper design of parasitic elements for end fire radiation;
- In far field, the radiated waves from all the elements are in-phase.


Helix Antenna


Travelling-Wave Antennas
Travelling wave & standing wave
Long wire antennas


Note:
Long wire antennas: “l” = Several wavelength
- One end for excitation;
- The other end for load (open, short, or matching);
- Transmission line with radiation.
Log-periodic Antennas
Yagi-Uda: High Gain
Log-periodic: Wide Bandwidth

Why:
- Feed from smaller dipole element;
- Feed out-of-phase with adjacent elements;
- Add a resistor at the end.

Microstrip Antennas



Basic Mode
- Equivalent magnetic current;
- Radiating and non-radiating apertures;
- Operating frequency with different L.

- Magnetic current array;
- Image theorem from infinite ground;
- Cavity model with magnetic walls;
- Different from


Antenna feeding methods

Impedance Matching:

Using 50-Ohm port: finding the position with Z_in=50 Ohm
Analysis Model

Known:
- Operating Frequency
- Dielectric: $\varepsilon_r$ and $h$
- Metal: $t$
Design:
- Patch: $L$ and $W$
- Evaluate gain
2 Models:

Transmission line model
determine W
Uniform distribution and field intensity in dielectric
$$ W=\frac{1}{2f_r\sqrt{\mu_0\epsilon_0}}\sqrt{\frac{2}{\epsilon_r+1}} $$Effective permittivity
$$ \varepsilon_{eff}=\frac{\varepsilon_r+1}2+\frac{\varepsilon_r-1}2{\left[1+12\frac hW\right]}^{-1/2} $$Fring effect and determine L
$$ \frac{\Delta L}{h}=0.412\frac{(\varepsilon_{eff}+0.3)(\frac Wh+0.264)}{(\varepsilon_{eff}-0.258)(\frac Wh+0.8)}\\L=\frac{\lambda_d}2-2\Delta L=\frac{\lambda_0}{2\sqrt{\varepsilon_{eff}}}-2\Delta L $$impedance matching
Cavity Model



Circular polarization
Dual feed patch




SP-feed 旋转馈电
Reflector and lens antennas

Corner Reflectors


Parabolic Reflectors




Lens Antennas

Lens antennas:
- High gain: plane wave;
- Geometrical optics: equal optical distance;
- Source: spherical wave, illuminate the whole lens;
- Source is positioned on the focal point for normal
radiated plane wave; - Other incident/radiated angle of plane wave: focus on
the focal plane with gain decrease; - Spatial Fournier Transformation: (x, y)&k
Reflected and transmitted array

